216 research outputs found

    The Bajnok-Janik formula and wrapping corrections

    Full text link
    We write down the simplified TBA equations of the AdS5×S5AdS_5 \times S^5 string sigma-model for minimal energy twist-two operators in the sl(2) sector of the model. By using the linearized version of these TBA equations it is shown that the wrapping corrected Bethe equations for these states are identical, up to O(g^8), to the Bethe equations calculated in the generalized L\"uscher approach (Bajnok-Janik formula). Applications of the Bajnok-Janik formula to relativistic integrable models, the nonlinear O(n) sigma models for n=2,3,4 and the SU(n) principal sigma models, are also discussed.Comment: Latex, 22 pages, published versio

    Lifting asymptotic degeneracies with the Mirror TBA

    Get PDF
    We describe a qualitative feature of the AdS_5 x S^5 string spectrum which is not captured by the asymptotic Bethe ansatz. This is reflected by an enhanced discrete symmetry in the asymptotic limit, whereby extra energy degeneracy enters the spectrum. We discuss how finite size corrections should lift this degeneracy, through both perturbative (Luscher) and non-perturbative approaches (the Mirror TBA), and illustrate this explicitly on two such asymptotically degenerate states.Comment: v3, 20 pages, 1 figure, 2 tables, as publishe

    The Spectrum of Strings on Warped AdS_3 x S^3

    Full text link
    String theory on NS-NS AdS_3 x S^3 admits an exactly marginal deformation which breaks the SL(2,R)_R x SL(2,R)_L isometry of AdS_3 down to SL(2,R)_R x U(1)_L. The holographic dual is an exotic and only partially understood type of two-dimensional CFT with a reduced unbroken global conformal symmetry group. In this paper we study the deformed theory on the string worldsheet. It is found to be related by a spectral flow which is nonlocal in spacetime to the undeformed worldsheet theory. An exact formula for the spectrum of massive strings is presented.Comment: 26 pages, no figure

    Comments on the Mirror TBA

    Full text link
    We discuss various aspects of excited state TBA equations describing the energy spectrum of the AdS_5 \times S^5 strings and, via the AdS/CFT correspondence, the spectrum of scaling dimensions of N = 4 SYM local operators. We observe that auxiliary roots which are used to partially enumerate solutions of the Bethe-Yang equations do not play any role in engineering excited state TBA equations via the contour deformation trick. We further argue that the TBA equations are in fact written not for a particular string state but for the whole superconformal multiplet, and, therefore, the psu(2,2|4) invariance is built in into the TBA construction.Comment: 28 pages, 1 figure, v2: misprints are correcte

    Twist operators in N=4 beta-deformed theory

    Get PDF
    In this paper we derive both the leading order finite size corrections for twist-2 and twist-3 operators and the next-to-leading order finite-size correction for twist-2 operators in beta-deformed SYM theory. The obtained results respect the principle of maximum transcendentality as well as reciprocity. We also find that both wrapping corrections go to zero in the large spin limit. Moreover, for twist-2 operators we studied the pole structure and compared it against leading BFKL predictions.Comment: 17 pages; v2: minor changes, references adde

    Classical integrability of Schrodinger sigma models and q-deformed Poincare symmetry

    Get PDF
    We discuss classical integrable structure of two-dimensional sigma models which have three-dimensional Schrodinger spacetimes as target spaces. The Schrodinger spacetimes are regarded as null-like deformations of AdS_3. The original AdS_3 isometry SL(2,R)_L x SL(2,R)_R is broken to SL(2,R)_L x U(1)_R due to the deformation. According to this symmetry, there are two descriptions to describe the classical dynamics of the system, 1) the SL(2,R)_L description and 2) the enhanced U(1)_R description. In the former 1), we show that the Yangian symmetry is realized by improving the SL(2,R)_L Noether current. Then a Lax pair is constructed with the improved current and the classical integrability is shown by deriving the r/s-matrix algebra. In the latter 2), we find a non-local current by using a scaling limit of warped AdS_3 and that it enhances U(1)_R to a q-deformed Poincare algebra. Then another Lax pair is presented and the corresponding r/s-matrices are also computed. The two descriptions are equivalent via a non-local map.Comment: 20 pages, no figure, further clarification and references adde

    On the classical equivalence of monodromy matrices in squashed sigma model

    Get PDF
    We proceed to study the hybrid integrable structure in two-dimensional non-linear sigma models with target space three-dimensional squashed spheres. A quantum affine algebra and a pair of Yangian algebras are realized in the sigma models and, according to them, there are two descriptions to describe the classical dynamics 1) the trigonometric description and 2) the rational description, respectively. For every description, a Lax pair is constructed and the associated monodromy matrix is also constructed. In this paper we show the gauge-equivalence of the monodromy matrices in the trigonometric and rational description under a certain relation between spectral parameters and the rescalings of sl(2) generators.Comment: 32pages, 3figures, references added, introduction and discussion sections revise

    On the six-dimensional origin of the AGT correspondence

    Full text link
    We argue that the six-dimensional (2,0) superconformal theory defined on M \times C, with M being a four-manifold and C a Riemann surface, can be twisted in a way that makes it topological on M and holomorphic on C. Assuming the existence of such a twisted theory, we show that its chiral algebra contains a W-algebra when M = R^4, possibly in the presence of a codimension-two defect operator supported on R^2 \times C \subset M \times C. We expect this structure to survive the \Omega-deformation.Comment: References added. 14 page

    Double-logs, Gribov-Lipatov reciprocity and wrapping

    Full text link
    We study analytical properties of the five-loop anomalous dimension of twist-2 operators at negative even values of Lorentz spin. Following L. N. Lipatov and A. I. Onishchenko, we have found two possible generalizations of double-logarithmic equation, which allow to predict a lot of poles of anomalous dimension of twist-2 operators at all orders of perturbative theory from the known results. Second generalization is related with the reciprocity-respecting function, which is a single-logarithmic function in this case. We have found, that the knowledge of first orders of the reciprocity-respecting function gives all-loop predictions for the highest poles. Obtained predictions can be used for the reconstruction of a general form of the wrapping corrections for twist-2 operators.Comment: 17 pages, references adde

    Supersymmetric Nonlinear O(3) Sigma Model on the Lattice

    Full text link
    A supersymmetric extension of the nonlinear O(3) sigma model in two spacetime dimensions is investigated by means of Monte Carlo simulations. We argue that it is impossible to construct a lattice action that implements both the O(3) symmetry as well as at least one supersymmetry exactly at finite lattice spacing. It is shown by explicit calculations that previously proposed discretizations fail to reproduce the exact symmetries of the target manifold in the continuum limit. We provide an alternative lattice action with exact O(3) symmetry and compare two approaches based on different derivative operators. Using the nonlocal SLAC derivative for the quenched model on moderately sized lattices we extract the value {\sigma}(2, u_0) = 1.2604(13) for the step scaling function at u_0 = 1.0595, to be compared with the exact value 1.261210. For the supersymmetric model with SLAC derivative the discrete chiral symmetry is maintained but we encounter strong sign fluctuations, rendering large lattice simulations ineffective. By applying the Wilson prescription, supersymmetry and chiral symmetry are broken explicitly at finite lattice spacing, though there is clear evidence that both are restored in the continuum limit by fine tuning of a single mass parameter.Comment: 35 pages, 36 figures, 2 tables; updated version as accepted by JHE
    corecore